Targeting VAP-1 Inhibition in NASH

Erin Quirk, M.D.

President and Chief Medical Officer
Terns Pharmaceuticals

NASH-TAG March 13, 2021

Introduction

- NAFLD/NASH prevalence is increasing and is associated with life-threatening complications including cirrhosis and hepatocellular carcinoma¹
- New treatments for NASH are urgently needed, including treatments targeting inflammatory and fibrotic mechanisms in the liver that contribute to disease
- Vascular adhesion protein-1 (VAP-1, SSAO, AOC3) is a cellular adhesion protein with amine oxidase activity that may play a role in hepatic inflammation and fibrosis that has been identified as a potential target for the treatment of NASH²

¹Liu et al. Lancet Gastroenterol Hepatol 2019 ²Weston et al. Journal of Clinical Investigation 2015

Role of VAP-1 in NASH

- VAP-1 may contribute to hepatic inflammation and fibrosis in NASH by:
 - Converting amines to aldehyde and hydrogen peroxide in the liver, leading to local oxidative stress
 - Recruitment of inflammatory leukocytes to the liver

VAP-1 Expression is Increased in NASH Patients with Liver Fibrosis

 VAP-1 is significantly and broadly overexpressed starting in moderate-severe fibrotic livers

Soluble VAP-1 is Elevated in NASH Patients

- Plasma VAP-1 concentration increased in NAFLD and NASH patients
- Increasing fibrosis stage correlates with increasing plasma VAP-1 concentrations

Potential role of VAP-1 in Steatosis

- Genetic deletion of VAP-1 (AOC3^{-/-}) protects against high fat diet induced steatosis in mice¹
- Anti-VAP-1 antibody can reduce steatosis in methionine choline deficient mice¹
- Methylamine (endogenous VAP-1 substrate) increases
 BMI and abdominal fat in transgenic mice overexpressing
 VAP-1²
- VAP-1 activity reduces triglyceride secretion and increases steatosis in human liver tissue³
- VAP-1 activity in human liver tissue upregulates lipid transporter molecule gene expression including fatty acid binding proteins (FABP 2 and 4)³

Liver steatosis in Western diet fed mice¹ (oil red staining for lipid droplets)

VAP-1 Inhibition Reduces ALT and CK-18 in NASH Patients

ALT and CK-18 decrease with VAP-1 inhibitors in NASH patients indicating potential for decreased inflammation and liver injury

Source: (LEFT) VAP-1 data from BI 1467335 (10mg) Phase 2a, 12-week NASH study from clinicaltrials.gov (NCT03166735; (RIGHT) CK-18: cytokeratin 18; M30 measures apoptosis and M65 measures apoptosis and necrosis. VAP-1 data from BI 1467335 (10mg) Phase 2a, 12-week NASH study from clinicaltrials.gov (NCT03166735), ASK1 data from selonsertib (18mg) Phase 2, 24-weeks NASH study from Hepatology. 2018; 67(2): 549–559; CCR2/5 data from cenicriviroc (150mg) Phase 2, 52-week NASH study from Hepatology. 2018; 67(5): 1754-1767

TERN-201: Highly selective VAP-1 inhibitor in development for the treatment of NASH

- TERN-201 is a novel, potent VAP-1 inhibitor with high liver distribution in Phase 1 development for the treatment of NASH
- TERN-201 is a highly selective inhibitor of VAP-1 with minimal potential to inhibit other human amine oxidases

Biochemical activity (IC₅₀, μM)

Inhibitor	VAP-1	MAO-A	МАО-В
TERN-201	0.0065	>50	>50
BI 1467335	0.005	>100	2.7

TERN-201 Improved Inflammation and Fibrosis in a Rat CDAA/HFD NASH Model

Liver histology

TERN-201 Rat CDAA/HFD NASH Model Reduced expression of fibrosis and inflammation markers

- Vehicle
- TERN-201 (7.5MPK)
- TERN-201 (25MPK)

TERN-201 Rat CDAA/HFD NASH Model

Reduced expression of hepatic stellate cell activation markers

TERN-201 Single Ascending Dose Phase 1 Study

Generally well tolerated; sustained, near complete VAP-1 inhibition with once daily dosing

Plasma VAP-1/SSAO-specific activity (% pre-dose)

All TERN-201 dose levels were generally well tolerated

TERN-201 Multiple Ascending Dose Phase 1 Study

Sustained suppression of plasma VAP-1-specific activity

Inhibition of plasma amine oxidase activity

Sustained suppression after last dose

TERN-201 Development Status

Preclinical NASH Model

- ✓ Improved liver inflammation and fibrosis
- ✓ Reduced gene expression and biomarkers of liver inflammation, fibrosis and stellate cell activation

Phase 1 in Healthy Subjects

- ✓ Generally well-tolerated
- ✓ Inhibited plasma VAP-1 activity

Next step: 12-week Phase 1b study in NASH patients to assess

- TERN-201 safety and tolerability
- Biomarkers of liver inflammation, fibrosis and steatosis

Data expected in 1H 2022

TERN-201 and Terns' NASH PipelineCombination opportunities

	PRE-CLINICAL	PHASE 1	PHASE 2a	PHASE 2b	PHASE 3	NEXT MILESTONE
Combinations Single Agents	TERN-101 (FXR Agonist)		SLIFT			NASH Phase 2a Data (3Q 2021)
	TERN-201 (VAP-1 Inhibitor)					NASH Phase 1b Trial start (1H 2021)
	TERN-501 (THR-β Agonist)					Phase 1a Trial start (1H 2021)
	GLP-1R Agonist					Nominate candidate (2H 2021)
	TERN-101 + TERN-501 (FXR + THR-β)					NASH Phase 2a Trial start (1H 2022)
	TERN-201 Combo (VAP-1 + Metabolic)					Nominate combination candidate

Summary

- VAP-1 is a cellular adhesion protein with ectoenzyme amine oxidase activity
- NASH patients have hepatic VAP-1 overexpression which may contribute to hepatic inflammation and fibrosis
- VAP-1 may also potentiate hepatic steatosis in NAFLD/NASH
- VAP-1 inhibition resulted in reduced plasma VAP-1 activity, transaminase levels and biomarkers
 of liver inflammation in a 12-week clinical trial in NASH patients
- TERN-201 is a VAP-1 inhibitor in clinical development
 - high liver penetration
 - high selectivity for VAP-1 inhibition and minimal potential for off-target monoamine oxidase inhibition
- TERN-201 was generally well-tolerated in Phase 1 clinical trials and exhibited near complete and sustained inhibition of plasma VAP-1 specific activity
- Further studies of TERN-201 as a potential treatment for NASH are warranted
 - 12-week Phase 1b study in NASH patients to initiate in 1H2021
 - Data expected in 1H2022

