

TERN-501, a potent and selective agonist of thyroid hormone receptor beta, strongly reduces histological features and biomarkers of non-alcoholic steatohepatitis associated pathology in rodent models

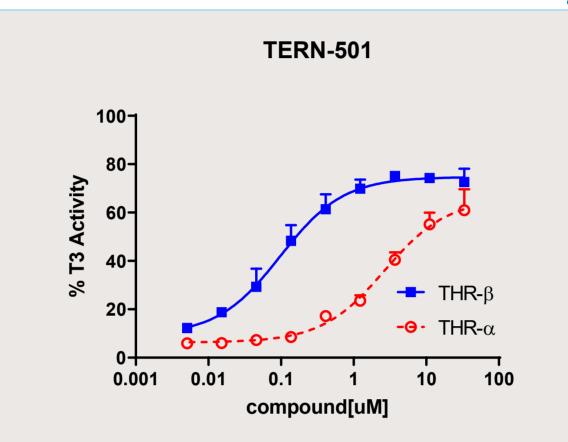
T. Kirschberg, C. Jones, Y. Xu, Y. Wang, M. Fenaux, and K. Klucher Terns Pharmaceuticals, Foster City, California, USA

INTRODUCTION

Liver inflammation and damage resulting from hepatic fat accumulation are key drivers in the progression of non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH). Selective agonism of thyroid hormone receptor beta (THR-beta) in the liver has been shown to markedly reduce liver fat, hepatic inflammation, and damage raising the prospect of an efficacious NASH treatment in the future.¹

AIM

The aim of the study was to investigate the potency and selectivity of TERN-501 in a biochemical assay and to assess the translation into efficacy and safety in rodent models capable of measuring THR-beta agonism.


METHODS

The potential of TERN-501 to become a therapeutic agent for the treatment of NASH was established in multiple pre-clinical settings

- The ability of TERN-501 to selectively agonize THRbeta was assessed biochemically using THR-beta or THR-alpha / RXR heterodimeric assays.²
- Male SD rats (4 individuals per dosing group) were fed a cholesterol enriched, otherwise normal, diet (1.5% cholesterol & 0.5% cholic acid) for 14 days. Compound(s) were administered via the intraperitoneal route (IP). Blood was collected at t = 0 (pre-treatment) and t = 24 hrs. Serum levels of cholesterol and triglycerides (TG) were determined for these two time points. Additionally, t = 6 hours plasma samples were prepared and analyzed to confirm test article exposure.
- Male C57BL/6J mice (8 individuals per dosing group) were fed a high fat diet (HFD) for 10 weeks. Then compound treatment (once daily oral [PO] via gavage) and 2x weekly IP injections of CCl₄ for 4 weeks was initiated. On day 28 of treatment, animals were euthanized for brain, heart and liver weight measurement and blood and liver sample collections.
- Cholesterol, triglycerides, ALT; Analysis of these parameters was done in a Hitachi 7180 clinical analyzer.
- Liver samples were processed for lipid quantification (colorimetric assays, SpectraMax 340PC384), histology, and RNA analysis (RT-qPCR and RNAseq).

RESULTS

TERN-501 Biochemical Potency and Selectivity

TERN-501 Mouse PO PK

TERN-501	
EC ₅₀ THR-beta	0.1 microM +0.05 microM
EC ₅₀ THR-alpha	2.5 microM <u>+</u> 1.5 microM
THR-beta/THR-alpha	23 [#] <u>+</u> 5.8

AUC [ng/mL*h]

1 mg/kg

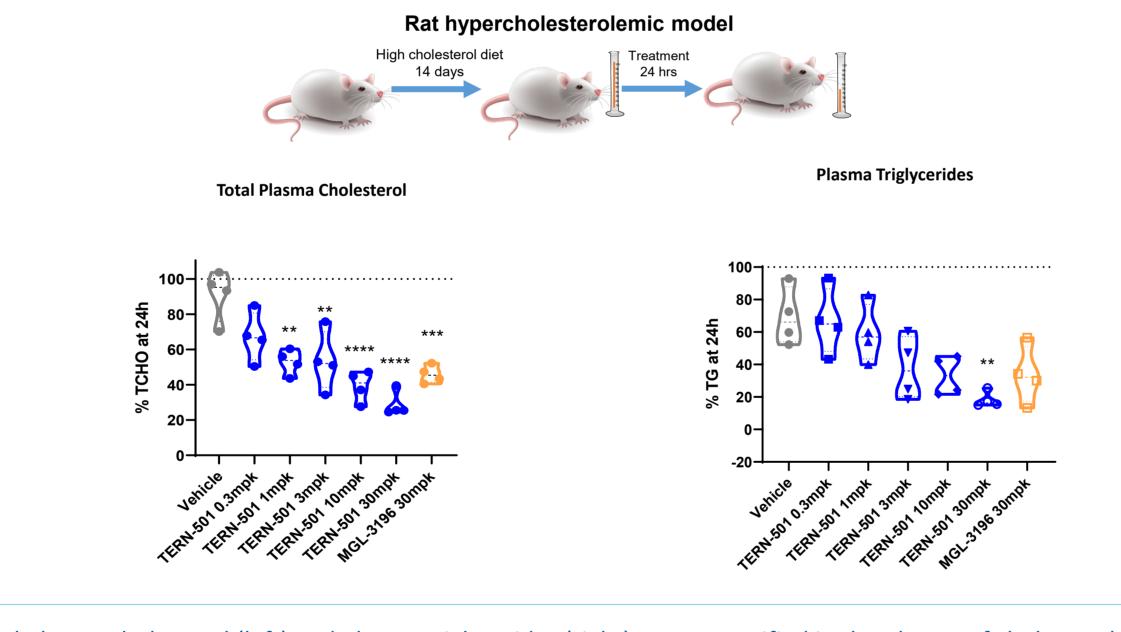
3 mg/kg

10 mg/kg

3,320

7,940

17,800


Blue curve THR-beta; red curve THR-alpha. $^{\#}$ T3 normalized. Table data are average and SD from multiple assays (n=38) Selectivity (THR-beta/alpha) for MGL-3196 was 15 \pm 3.7 (lit: 28)². Selectivity (THR-beta/alpha) for VK2809A³ was 2.

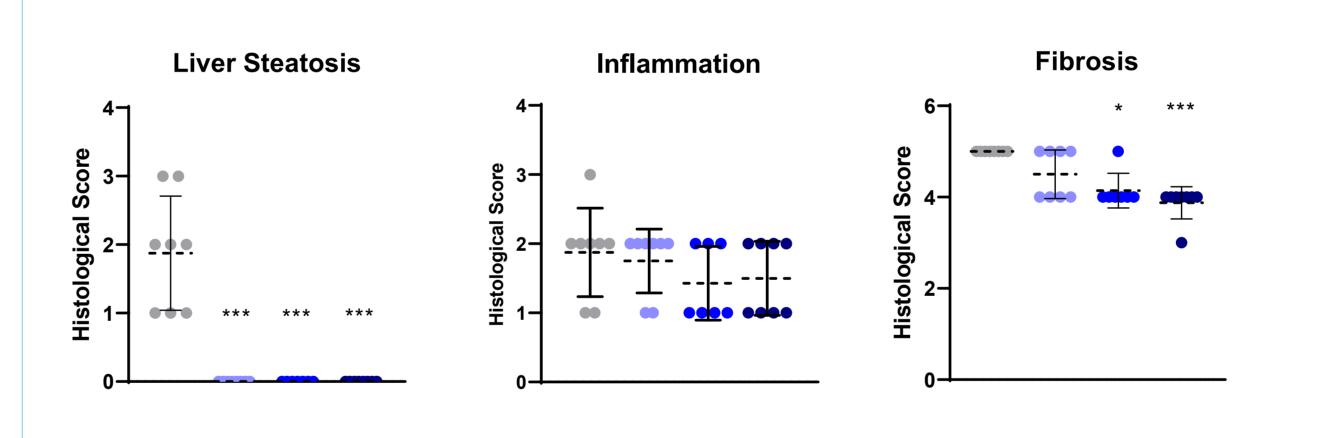
Mouse NASH Model and TERN-501 Effects on Body and Organ Weight

Schematic description of study design and display of body weight (left), heart/brain ratio (middle) and liver/brain ratio (right) at the end of the study. Data for individual animals (dots) and mean (dashed line) are depicted. Statistical significance for liver/brain ratio change of any treatment group was ***p<0.001 vs NASH Control (Vehicle); statistics determined by one-way ANOVA followed by Tukey.

TERN-501 Highly Effective in Rat Hypercholesterolemic Model³

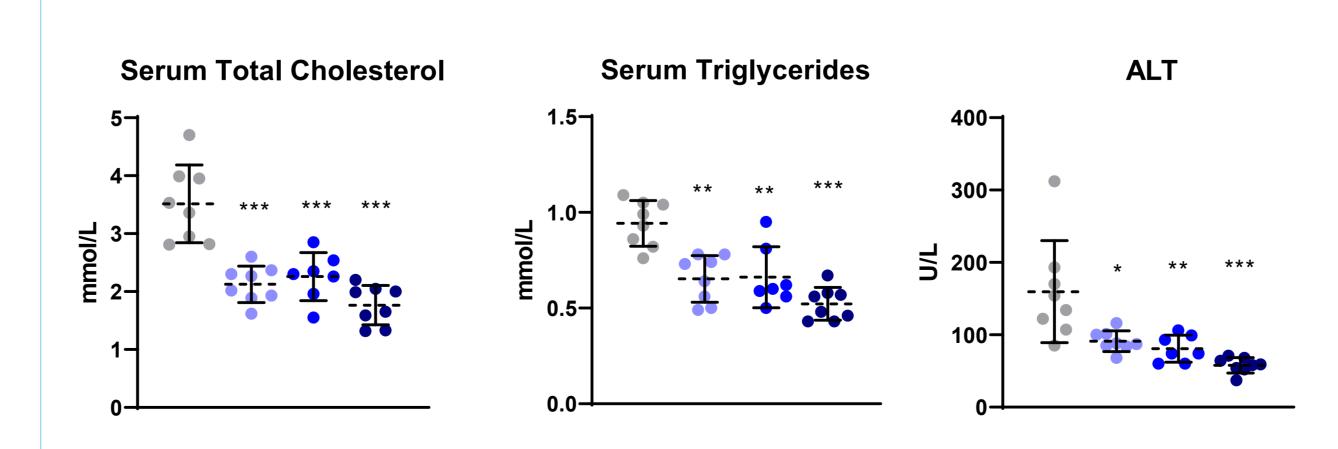
Total plasma cholesterol (left) and plasma triglycerides (right) were quantified in the plasma of cholesterol-fed SD rats at t = 24 hrs after drug administration (IP). Data are displayed as % of value measured relative to t = 0. Data for individual animals are shown. Mean value displayed via dashed line; **p< 0.01, ***p< 0.001, ****p< 0.0001 vs Vehicle Control; statistics determined by one-way ANOVA followed by Tukey.

TERN-501 10 mg/kg PO


TERN-501 3 mg/kg PO

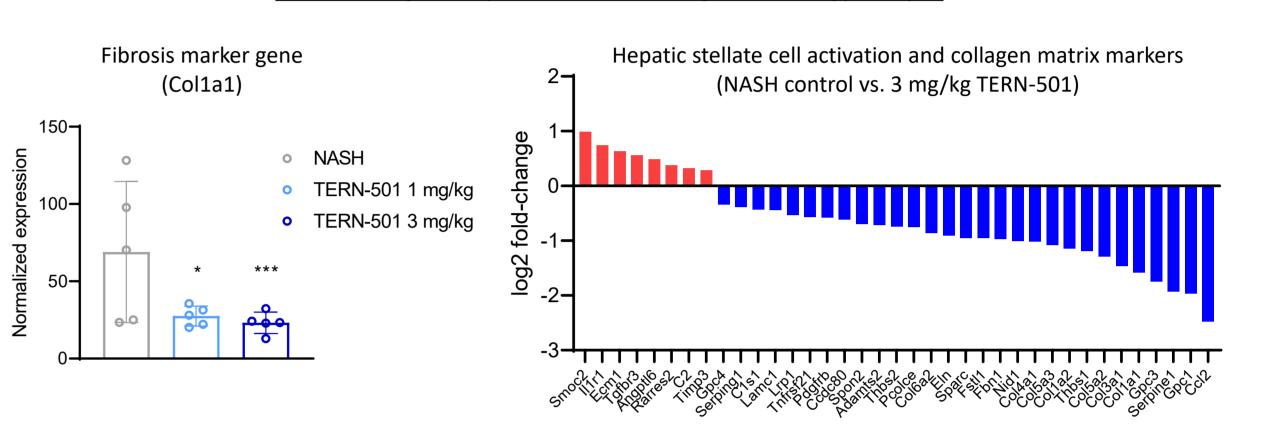
TERN-501 1 mg/kg PO

Mice (male C57 BL6, non-fasted, 3 animals/time point) were dosed with TERN-501 via oral gavage. Plasma was


collected at the indicated time points and TERN-501 levels were quantified via LC-MS/MS method.

Liver Histology: TERN-501 Effects on Liver Steatosis and Fibrosis in Mouse NASH Model

Liver steatosis (left), inflammation (middle) and fibrosis (right) were quantified by histological analysis of degree of steatosis (Score 0, <5%; 1, 5-33%; 2, 34-66%; 3, >66%), lobular inflammation (Score 0, none; 1, <2 foci per 20X field; 2, 2-4 foci per 20X field; 3, >4 foci per 20X field) and fibrosis (0-6; Score 0, none; 1, perisinusoidal mild; 2, perisinusoidal moderate; 3, portal / periportal; 4, perisinusoidal and portal/periportal; 5, bridging fibrosis; 6, cirrhosis). Data for individual animals (dots) and mean (dashed line) are presented; *p < 0.05, ***p < 0.001 vs NASH Control (Vehicle); statistics determined by one-way ANOVA followed by Tukey.


Serum Analysis: TERN-501 Effects on Lipids and Indicators of Liver Injury (ALT) in Mouse NASH Model

Serum was collected at termination and analyzed for total cholesterol (left), triglycerides (middle) and a biomarker of liver damage, alanine aminotransferase (ALT, right) using an automatic biochemical analyzer. Data are presented as Mean \pm SD (n=8); *p<0.05,**p<0.01 ***p<0.001 vs NASH Control (Vehicle); statistics determined by one-way ANOVA followed by Tukey.

RNAseq Analysis: Gene Expression of Collagen Matrix Markers & Stellate Cell Activation with TERN-501 in Mouse NASH Model

Liver whole transcriptome analysis was performed using RNAseq of NASH control (Vehicle) and TERN-501 (1 and 3 mg/kg) treated animal groups (n=5 animals per group). Collagen type 1 alpha 1 chain (Col1a1) gene expression and significance (adjusted p-value) in control and TERN-501 treatment groups is shown as a representative marker of fibrosis (left). Waterfall plot of differentially expressed genes (adjusted p-value < 0.05) associated with collagen extracellular matrix and hepatic stellate cell activation in NASH vehicle vs TERN-501 (3 mg/kg) treatment groups (right). *p-value<0.05; ***p-value<0.001

CONCLUSIONS

TERN-501 is a potent and selective THR-beta agonist. TERN-501 reduced serum cholesterol levels in a hypercholesterolemic rat model and significantly reduced liver steatosis, fibrosis, and serum markers of liver damage in a NASH mouse model. These results support further investigation of TERN-501 as a potential treatment for NASH.

ACKNOWLEDGEMENTS

Support from the clinical team at TERNS is gratefully acknowledged.

REFERENCES

- 1. Harrison S. A. et al. Lancet 2019, 394 (10213), 2012-2024.
- 2. Kelly M. J. et al. J. Med. Chem. 2014, 57, 3912-3923.
- 3. Erion, M. D. et al. Proc. Nat. Aca. Science USA, 2007, 104, 15490-15495.

CONTACT INFORMATION

Martijn Fenaux, Terns Pharmaceuticals 1065 E. Hillsdale Blvd., Suite 100 Foster City, CA 94404 mfenaux@ternspharma.com